Tuition

withor Math NA Formula List-Math (4045)-Updated 24/8/22
*Formulas highlighted in yellow are found in the formula list of the exam paper.

Unit Conversion	
Area	Mass 1 Ton $=1000 \mathrm{~kg}$
$1 \mathrm{~m}^{2}=100 \mathrm{~cm} \times 100 \mathrm{~cm}=10000 \mathrm{~cm}^{2}$	Time $1 \mathrm{~h}=60 \mathrm{~min}=60 \times 60=3600 \mathrm{sec}$
$1 \mathrm{~km}^{2}=1000 \mathrm{~m} \times 1000 \mathrm{mv}=1000000 \mathrm{~m}^{2}$	Speed
Volume	
$1 \mathrm{~m}^{3}=100 \mathrm{~cm} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm}=1000000 \mathrm{~cm}^{3}$	$\mathrm{~km} / \mathrm{h}$
1 Litre $=1000 \mathrm{~cm}^{3}\left(\right.$ As $\left.1 \mathrm{mg}=1 \mathrm{~cm}^{3}\right)$	m / s

Tuition

with or Math NA Formula List-Math (4045)-Updated 24/8/22

Ratio and Proportion

To convert Area to Volume \& vice versa, first convert to Length.

$$
\left(\frac{A_{1}}{A_{2}}\right)^{\sqrt{\text { Square Root }}} \underset{\text { Square }^{2}}{\rightleftarrows}\left(\frac{L_{1}}{L_{2}}\right)^{\sqrt{\text { Cube Root }}} \underset{\text { Cube }^{3}}{\rightleftarrows}\left(\frac{V_{1}}{V_{2}}\right)
$$

Tuition

withor Math NA Formula List-Math (4045)-Updated 24/8/22
Speed and Distance

Tuition

Math NA Formula List-Math (4045)-Updated 24/8/22

Indices

$\begin{aligned} & x^{a} \times x^{b}=x^{a+b} \\ & a^{m} \times b^{m}=(a \times b)^{m} \end{aligned}$	Base No. same \rightarrow Power add Power same \rightarrow Base No. multiply
$\frac{x^{a}}{x^{b}}=x^{a-b}$ $\frac{a^{m}}{b^{m}}=\left(\frac{a}{b}\right)^{m}$	Base No. same \rightarrow Power minus Power same \rightarrow Base No. divide
Note: $\left(x^{a}\right)^{b}=x^{a \times b}$ $\left(x^{a}\right)^{b} \neq x^{a+b}$	NOTE: You can only use the laws of indices if either the base number or the power is the same.
$x^{0}=1 \quad x^{-a}=\frac{1}{x^{a}}$	$\frac{1}{x^{-a}}=x^{a}$
$\left(\frac{x}{y}\right)^{-a}=\left(\frac{y}{x}\right)^{a} \quad x^{\frac{1}{b}}=\sqrt[b]{x^{1}}$	$x^{\frac{a}{b}}=\sqrt[b]{x^{a}}$
$x^{-\frac{1}{b}}=\frac{1}{x^{\frac{1}{b}}}=\frac{1}{\sqrt[b]{x^{1}}}$	$x^{-\frac{a}{b}}=\frac{1}{x^{\frac{a}{b}}}=\frac{1}{\sqrt[b]{x^{a}}}$

Tuition

witho Math NA Formula List-Math (4045)-Updated 24/8/22

Coordinate Geometry

Linear Graph

$y=m x+c \quad$ where $m=$ gradient
and $c=y$-intercept

$\operatorname{Gradient}(\mathrm{m})=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$	Distance between two points $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Parallel lines have the same gradient Both values are the same $\left(m_{1}=m_{2}\right)$.	
 Vertical lines have gradient that is infinity $\mathrm{m}=\infty$	 Horizintal lines have gradient that is 0 $\mathrm{m}=0$

Tuition

wittor Math NA Formula List-Math (4045)-Updated 24/8/22

Tuition

withor Math NA Formula List-Math (4045)-Updated 24/8/22

Arc Length, Sector and Segment
Arc Length

$\mathrm{S}=\frac{\theta^{0}}{360^{0}} \times 2 \pi r$	Or $\quad \mathrm{S}=r \times \theta$
θ^{0} in Degrees	θ^{0} in Radian

Area of Sector

$$
\begin{array}{lr}
\begin{array}{lr}
\mathrm{A}=\frac{\theta^{0}}{360^{0}} \times \pi r^{2} & \text { Or }
\end{array} \quad A=\frac{1}{2} \times r^{2} \times \theta \\
\theta^{0} \text { in Degrees } & \theta^{0} \text { in Radian }
\end{array}
$$

Area of Triangle

$$
\mathrm{A}=\frac{1}{2} \times a \times b \times \sin C
$$

C may be in degree or radian.

Note: π radian $=180^{\circ}$ degrees

Tuition

Math NA Formula List-Math (4045)-Updated 24/8/22

Mensuration

Circles

Area $=\pi \times r^{2}$
Circumference $=2 \times \pi \times r$

Or $\pi \times d$

Trapezium
Perimeter $=w+x+y+z$
Area $=\frac{1}{2} \times(x+y) \times h$

Parallelogram

Perimeter $=2 x y+2 x z$
Area $=y \times z$

Tuition

withor Math NA Formula List-Math (4045)-Updated 24/8/22

Cylinder

Total Surface Area
(close cylinder)
$2 \times \pi \times r^{2}$ (top \& bottom circles)
$+2 \times \pi \times r \times h$ (curved side)
Total Surface Area
(open cylinder)
$\pi \times r^{2}($ bottom circle) +
$=2 \times \pi \times r \times h($ curved side $)$

Volume $=\pi \times r^{2} \times h$

Cone
Total Surface Area =
$\pi \times r \times l+\pi \times r^{2}$
Volume $=\frac{1}{3} \times \pi \times r^{2} \times h$

I=slant height
h=vertical height

(Note the difference)

Tuition

withor Math NA Formula List-Math (4045)-Updated 24/8/22

Pyramid

Total Surface Area $=$
Sum of all surface areas
Volume $=\frac{1}{3} \times A \times h$

$A=$ base area
$h=$ vertical height
Note: The formula for A depends on the base area.
Pyramids have square, rectangle or triangle base are.

Sphere

Total Surface Area $=4 \times \pi \times r^{2}$
Volume $=\frac{4}{3} \times \pi \times r^{3}$
Hemisphere (half-sphere)

Total Surface Area $=2 \times \pi \times r^{2}+\pi \times r^{2}$
Volume $=\frac{2}{3} \times \pi \times r^{3}$

Tuition

withor Math NA Formula List-Math (4045)-Updated 24/8/22

Properties of Circle

Angle at Centre =Twice Angle at Circumference

Angles in the Same Segment
Are Equal

Tuition

withos Math NA Formula List-Math (4045)-Updated 24/8/22
Angle in a Semi-circle $=90^{\circ}$

Tuition

withos Math NA Formula List-Math (4045)-Updated 24/8/22
Isosceles Triangle

Perpendicular from Centre Bisects Chord
$\angle \mathrm{OXA}=\angle \mathrm{OXB}=90^{\circ}$

Equal Chord, Equal Distance from Centre

Tuition

withor Math NA Formula List-Math (4045)-Updated 24/8/22

Tangents from External
Point
$B C=B A$
$\angle \mathrm{OCB}=\angle \mathrm{OAB}=90^{\circ}$
$O A=O C$ (radius)

Tuition

Trigonometry

Note: Use on a Right Angle Triangle
$\operatorname{Tan} B=\frac{\text { Opposite (DE) }}{\text { Adjacent (EB) }}$ (TOA)
$\operatorname{Cos} \mathrm{B}=\frac{\text { Adjacent (EB) }}{\text { Hypotenuse (DB) }}(\mathrm{CAH})$

$\operatorname{Sin} B=\frac{\text { Opposite (DE) }}{\text { Hypotenuse (DB) }}(\mathrm{SOH})$
Pythagoras Theorem $D B^{2}=D E^{2}+E B^{2}$

Note: Use when the triangle is NOT Right Angle.
Area of Triangle $=\frac{1}{2} \times a \times b \times \operatorname{Sin} C$

Sine Rule $\frac{a}{\operatorname{Sin} A}=\frac{b}{\operatorname{Sin} B}=\frac{c}{\operatorname{Sin} C}$

Cosine Rule

$$
c^{2}=a^{2}+b^{2}-2 a b \times \operatorname{Cos} C
$$

Tuition

witho Math NA Formula List-Math (4045)-Updated 24/8/22

\measuredangle of Elevation \& \measuredangle of Depression are measured from the horizonal line.

(a right-angled triangle is formed)

(a right-angled triangle is formed)

Bearing is use to describe direction.
It is measured from North in a Clockwise direction and
It is represented by a 3-digit number.

- Bearing of 045°

- Bearing of 340°

- Bearing of 180°

- Bearing of 230°

Tuition

withor Math NA Formula List-Math (4045)-Updated 24/8/22

Congruent and Similarity

Congruent Triangles

If $A B=P Q, B C=Q R$ and $C A=R P$, then $\triangle A B C$ is congruent to $\triangle P Q R$ (SSS Congruence Test).

If $A \hat{B} C=P \hat{Q} R, A \hat{C} B=P \hat{R} Q$ and $B C=Q R$, then $\triangle A B C$ is congruent to $\triangle P Q R$ (ASA Congruence Test).

If $B \hat{A} C=Q \hat{P} R, A \hat{B} C=P \hat{Q} R$ and $B C=Q R$, then $\triangle A B C$ is congruent to $\triangle P Q R$ (AAS Congruence Test).

Tuition

witho Math NA Formula List-Math (4045)-Updated 24/8/22

Tuition

witbor Math NA Formula List-Math (4045)-Updated 24/8/22

If $\frac{P Q}{A B}=\frac{Q R}{B C}=\frac{R P}{C A}$, then $\triangle A B C$ is similar to $\triangle P Q R$ (SSS Similarity Test).

If $\frac{P Q}{A B}=\frac{Q R}{B C}$ and $A \hat{B} C=P \hat{Q} R$, then $\triangle A B C$ is similar to $\triangle P Q R$ (SAS Similarity Test).

Probability

Probability $=\frac{\text { Number Of Successful Outcome }}{\text { Total Number Of Outcomes }}$

If the probability of A AND B occurs, then $P(A) \times P(B)$.

If the probability of $A O R B$ occurs, then $P(A)+P(B)$

If the probability of A DOES NOT occurring, then 1- $P(A)$. Probability is between and include 0 to 1.

Tuition

withor Math NA Formula List-Math (4045)-Updated 24/8/22
If Probability $(P)=0$, it means that there is NO CHANCE of success.

If Probability $(P)=1$ it means that success is CERTAIN.

Statistics

Ungroup Data

$\operatorname{Mean}(\overline{\mathrm{X}})=\frac{\text { Sum Of All Data Values }}{\text { Number Of Data }}$
Group Data
$\operatorname{Mean}(\bar{X})=\frac{\sum f x}{\sum f}$

Lower Quartile $=\frac{1}{4}(n+1)$ th Term
Median $=\left(\frac{n+1}{2}\right)$ th Term
Upper Quartile $=\frac{3}{4}(n+1)$ th Term
n is the total frequency.
*These formulas give the POSITION where the value is located. It IS NOT the actual value.

Ungroup Data - Standard Deviation (σ)

$$
\sigma=\sqrt{\frac{\sum(x-\bar{X})^{2}}{\sum f}} \text { or } \sigma=\sqrt{\frac{\sum x^{2}}{n}-\bar{X}^{2}}
$$

Group Data - Standard Deviation (σ)

$$
\sigma=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}} \text { or } \sigma=\sqrt{\frac{\sum f x^{2}}{\sum f}-(\bar{X})^{2}}
$$

Tuition

withor Math NA Formula List-Math (4045)-Updated 24/8/22

Graphs

Tuition

witthon Math NA Formula List-Math (4045)-Updated 24/8/22

