Math NA Formula List-Math (4045)-Updated 24/8/22

*Formulas highlighted in yellow are found in the formula list of the exam paper.

Unit Conversion

Area

1m2=100cm×100cm=10 000cm2

1km²=1000m×1000mv=1 000 000m²

Volume

1m3=100cm×100cm×100cm=1 000 000cm3

1 Litre = 1000cm3 (As 1mg=1cm3)

Mass 1 Ton = 1000kg

Time 1h =60 min = 60x60=3600sec

Speed

km/h

Financial Math

Percentage Increase

$$= \frac{Increase}{Original} \times 100\%$$

Percentage Decrease

$$= \frac{\frac{Decrease}{Original} \times 100\%}{Original}$$

Simple Interest

$$I = \frac{P \times R \times T}{100}$$

R-Interest (%) per year

T-Time (no. of years)

Compound Interest

$$P + I = P \times \left(1 + \frac{r}{100}\right)^n$$

r-Interest (%) in 1 period

n-Time (no. of periods)

P-Principal (\$)

I- Interest (\$)

Semi-Annually

n=2xT, r=R/2

Quarterly

n=4xT, r=R/4

Monthly

n=12xT, r=R/12

Ratio and Proportion

X and Y are two

Similar Cones

Ratio of heights equal

ratio of lengths

$$\frac{h_1}{h_2} = \frac{l_1}{l_2}$$

Ratio of Areas equal

Square of ratio of length

$$\frac{A_{1}}{A_{2}} = \frac{\left(l_{1}\right)^{2}}{\left(l_{2}\right)^{2}}$$

$$\frac{\sqrt{A_1}}{\sqrt{A_2}} = \frac{l_1}{l_2}$$

Ratio of Volume equal

Cube of ratio of length

$$\frac{V_1}{V_2} = \frac{\left(l_1\right)^3}{\left(l_2\right)^3}$$

$$\frac{\sqrt[3]{V_1}}{\sqrt[3]{V_2}} = \frac{l_1}{l_2}$$

To convert Area to Volume & vice versa, first convert to Length.

$$\left(\frac{A_{1}}{A_{2}}\right)^{\sqrt{Square\ Root}} \left(\frac{L_{1}}{L_{2}}\right)^{\sqrt{Cube\ Root}} \left(\frac{V_{1}}{V_{2}}\right)^{\sqrt{Cube\ Root}} \left(\frac{V_{1}}{V_{2}}\right)^{\sqrt{Cub$$

Math NA Formula List-Math (4045)-Updated 24/8/22

Speed and Distance

$$Speed = \frac{Distance}{Time}$$

$$Acceleration = \frac{\textit{Final Speed-Initial Speed}}{\textit{Time Taken}}$$

$$Average\ Speed = \frac{{\it Total\ Distance}}{{\it Total\ Time}}$$

The steeper the gradient, the faster the speed.

You can also find the speed by using gradient = $\frac{\text{rise}}{\text{run}}$

Negative gradient means that the object is moving in the opposite direction.

You can also find the acceleration by using gradient = $\frac{\text{rise}}{\text{run}}$

The Area <u>UNDER</u> the graph is the distance travelled.

Relating the distance -time graph to the speed time graph.

When the line in the distance-time graph curve upward, the object is accelerating, when it curves downwards, the object is decelerating.

with Math NA Formula List-Math (4045)-Updated 24/8/22

Indices	
$x^a \times x^b = x^{a+b}$	Base No. same→ Power add
$a^m \times b^m = (a \times b)^m$	Power same→ Base No. multiply
$\frac{x^a}{x^b} = x^{a-b}$	Base No. same→ Power minus Power same→ Base No. divide
$\frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$	
$Note: \left(x^a\right)^b = x^{a \times b}$	NOTE: You can only use the laws of indices if either the base number or the
$\left(x^{a}\right)^{b} \neq x^{a+b}$	power is the same.

$$x^{0} = 1$$
 $x^{-a} = \frac{1}{x^{a}}$ $\frac{1}{x^{-a}} = x^{a}$

$$\left(\frac{x}{y}\right)^{-a} = \left(\frac{y}{x}\right)^{a} \qquad x^{\frac{1}{b}} = \sqrt[b]{x^{1}} \qquad x^{\frac{a}{b}} = \sqrt[b]{x^{a}}$$

$$x^{-\frac{1}{b}} = \frac{1}{x^{\frac{1}{b}}} = \frac{1}{\sqrt[b]{x^1}} \qquad x^{-\frac{a}{b}} = \frac{1}{x^{\frac{a}{b}}} = \frac{1}{\sqrt[b]{x^a}}$$

Coordinate Geometry

Linear Graph

 $Y = m \times + c$ where m = gradient

and c= y-intercept

Gradient(m) =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

Distance between two points

$$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Parallel lines have the same gradient

Both values are the same (m1 = m2).

Vertical lines have gradient that is infinity

 $m = \infty$

Horizintal lines have gradient that is 0

$$m = 0$$

Polygons

Sum of interior angles of

an n-sided polygon.

$$(n-2) \times 180^{\circ}$$

Sum of exterior angles of of \underline{ANY} polygon = 360°

Each interior angle of an nsided polygon.

$$\frac{(n-2)\times 180^o}{n}$$

Each exterior angle of an n-sided polygon

$$=\frac{360^{0}}{n}$$

Names of Polygons

An Exterior \angle + An Interior \angle = 180°

80200

Arc Length, Sector and Segment

Arc Length

$$S = \frac{\theta^0}{360^0} \times 2\pi r$$

Or

$$S=r \times \theta$$

 $heta^{\scriptscriptstyle 0}$ in Degrees

 $\theta^{\scriptscriptstyle 0}$ in Radian

Area of Sector

$$A = \frac{\theta^0}{360^0} \times \pi r^2$$

Or

$$A = \frac{1}{2} \times r^2 \times \theta$$

 $\theta^{\rm 0}$ in Degrees

 θ^{0} in Radian

Area of Triangle

$$A = \frac{1}{2} \times a \times b \times \sin C$$

C may be in degree or radian.

Note: π radian = 180° degrees

Mensuration

Circles

Area = $\pi \times r^2$

Circumference = $2 \times \pi \times r$

Or $\pi \times d$

Trapezium

Perimeter = w + x + y + z

Area=
$$\frac{1}{2} \times (x+y) \times h$$

Parallelogram

Perimeter = $2 \times y + 2 \times z$

Area= y × z

Tuition

Math NA Formula List-Math (4045)-Updated 24/8/22

Cylinder

Total Surface Area

(close cylinder)

 $2 \times \pi \times r^2$ (top & bottom circles) + $2 \times \pi \times r \times h$ (curved side)

Total Surface Area (open cylinder)

$$\pi \times r^2(\text{bottom circle}) +$$
= $2 \times \pi \times r \times h(\text{curved side})$

Volume = $\pi \times r^2 \times h$

Cone

Total Surface Area =

$$\pi \times r \times l + \pi \times r^2$$

$$Volume = \frac{1}{3} \times \pi \times r^2 \times h$$

I=slant height

h=vertical height

(Note the difference)

Tuition

withou

Math NA Formula List-Math (4045)-Updated 24/8/22

Pyramid

Total Surface Area =

Sum of all surface areas

Volume =
$$\frac{1}{3} \times A \times h$$

A=base area

h=vertical height

Note: The formula for A depends on the base area.

Pyramids have square, rectangle or triangle base are.

<mark>Sphere</mark>

Total Surface Area = $4 \times \pi \times r^2$

Volume =
$$\frac{4}{3} \times \pi \times r^3$$

Hemisphere (half-sphere)

Total Surface Area = $2 \times \pi \times r^2 + \pi \times r^2$

Volume=
$$\frac{2}{3} \times \pi \times r^3$$

Properties of Circle

Angle at Centre = Twice Angle at Circumference

Angles in the Same Segment

Are Equal

Angle in a Semi-circle =90°

Angles in Opposite Segment

(Add up to 180°)

Exterior angle of a cyclic quadrilateral

Isosceles Triangle

Perpendicular from Centre Bisects Chord

$$\angle OXA = \angle OXB = 90^{\circ}$$

Equal Chord, Equal Distance from Centre

Tangent Perpendicular Radius

$$\angle OAB = 90^{\circ}$$

Tangents from External Point

BC=BA

$$\angle$$
 OCB = \angle OAB = 90°

OA = OC (radius)

Math NA Formula List-Math (4045)-Updated 24/8/22

Trigonometry

Note: Use on a Right Angle Triangle

$$Tan B = \frac{Opposite (DE)}{Adjacent (EB)} (TOA)$$

$$Cos B = \frac{Adjacent (EB)}{Hypotenuse (DB)} (CAH)$$

$$Sin B = \frac{Opposite (DE)}{Hypotenuse (DB)} (SOH)$$

Pythagoras Theorem $DB^2 = DE^2 + EB^2$

Note: Use when the triangle is NOT Right Angle.

Area of Triangle =
$$\frac{1}{2} \times a \times b \times SinC$$

Sine Rule
$$\frac{a}{Sin A} = \frac{b}{Sin B} = \frac{c}{Sin C}$$

Cosine Rule

$$c^2 = a^2 + b^2 - 2ab \times CosC$$

(a right-angled triangle is formed)

Bearing is use to describe direction.

It is measured from North in a Clockwise direction and

It is represented by a 3-digit number.

Bearing of 045°

Bearing of 180°

Bearing of 340°

· Bearing of 230°

Congruent and Similarity

Congruent Triangles

If AB = PQ, BC = QR and CA = RP, then $\triangle ABC$ is congruent to $\triangle PQR$ (SSS Congruence Test).

If $A\hat{B}C = P\hat{Q}R$, $A\hat{C}B = P\hat{R}Q$ and BC = QR, then ΔABC is congruent to ΔPQR (ASA Congruence Test).

If $B\hat{A}C = Q\hat{P}R$, $A\hat{B}C = P\hat{Q}R$ and BC = QR, then ΔABC is congruent to ΔPQR (AAS Congruence Test).

If AB = PQ, AC = PR and $B\widehat{A}C = Q\widehat{P}R$, then $\triangle ABC$ is congruent to $\triangle PQR$ (SAS Congruence Test).

If AC = XZ, AB = XY or BC = YZ, and $A\hat{B}C = X\hat{Y}Z = 90^{\circ}$, then $\triangle ABC$ is congruent to ΔXYZ (RHS Congruence Test).

Similar Triangles

If $B\hat{A}C = Q\hat{P}R$ and $A\hat{B}C = P\hat{Q}R$, then ΔABC is similar to ΔPQR (AA Similarity Test).

🤼 Math NA Formula List-Math (4045)-Updated 24/8/22

If $\frac{PQ}{AB} = \frac{QR}{BC} = \frac{RP}{CA}$, then $\triangle ABC$ is similar to $\triangle PQR$ (SSS Similarity Test).

If $\frac{PQ}{AB} = \frac{QR}{BC}$ and $A\hat{B}C = P\hat{Q}R$, then $\triangle ABC$ is similar to $\triangle PQR$ (SAS Similarity Test).

Probability

 $Probability = \frac{Number\ Of\ Successful\ Outcome}{Total\ Number\ Of\ Outcomes}$

If the probability of A AND B occurs, then $P(A) \times P(B)$.

If the probability of A OR B occurs, then P(A) + P(B)

If the probability of A DOES NOT occurring, then 1- P(A).

Probability is between and include 0 to 1.

Tuition

withou

Math NA Formula List-Math (4045)-Updated 24/8/22

If Probability (P) = 0, it means that there is NO CHANCE of success.

If Probability (P) = 1 it means that success is CERTAIN.

Statistics

Ungroup Data

$$Mean(\overline{X}) = \frac{Sum Of All Data Values}{Number Of Data}$$

Group Data

$$Mean(\overline{X}) = \frac{\sum fx}{\sum f}$$

Lower Quartile = $\frac{1}{4}(n+1)$ th Term

 $Median = (\frac{n+1}{2})th$ Term

Upper Quartile = $\frac{3}{4}(n+1)$ th Term

n is the total frequency.

*These formulas give the POSITION where the value is located. It IS NOT the actual value.

Ungroup Data - Standard Deviation (σ)

$$\sigma = \sqrt{\frac{\sum (x - \overline{X})^2}{\sum f}} \text{ or } \sigma = \sqrt{\frac{\sum x^2}{n} - \overline{X}^2}$$

Group Data - Standard Deviation (σ)

$$\sigma = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2} \text{ or } \sigma = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\overline{X}\right)^2}$$

