*Formulas highlighted in yellow are found in the formula list of the exam paper.

Other Laws of Indices				
$x^{-a} = \frac{1}{x^a}$	$\frac{1}{x^b} = \sqrt[b]{x^1}$	$x^{\frac{a}{b}} = \sqrt[b]{x^{a}}$		
$x^{-\frac{1}{b}} = \frac{1}{\frac{1}{x^{b}}} = \frac{1}{\sqrt[b]{x^{1}}}$	$\frac{1}{x^{-a}} = x^a$	$\left(\frac{x}{y}\right)^{-a} = \left(\frac{y}{x}\right)^{a}$		
$x^{-\frac{a}{b}} = \frac{1}{\frac{a}{x^{b}}} = \frac{1}{\sqrt[b]{x^{a}}}$	NOTE: You can only use the laws of indices if either the base number or the power is the same.			

Tuition
A-Math Formula List - Additional Math (4049)

$$\frac{a}{\sqrt{x}+\sqrt{y}} \times \frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}} = \frac{a(\sqrt{x}-\sqrt{y})}{(\sqrt{x})^2 - (\sqrt{y})^2} = \frac{a\sqrt{x}-a\sqrt{y}}{x-y}$$
Note: $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$ $\sqrt{a-b} \neq \sqrt{a} - \sqrt{b}$

Polynomials & Partial Factions
$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$
 $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$ Linear Factor $\frac{mx+n}{(ax+b)(cx-d)} = \frac{A}{(ax+b)} + \frac{B}{(cx+d)}$ Repeat Factors $\frac{mx+n}{(ax+b)(cx-d)^2} = \frac{A}{(ax+b)} + \frac{B}{(cx+d)} + \frac{C}{(cx+d)^2}$ Quadratic Factors $\frac{mx+n}{(ax+b)(cx^2-d)} = \frac{A}{(ax+b)} + \frac{Bx+C}{(cx^2+d)}$ Note: If the highest coefficient of the NUMERATOR is the SAME or LARGER thatthe DENOMINATOR. Do LONG DIVISION before partial fractions.

Logarithms				
$\log_a 1 = 0$	$\log_a a = 1$			
Since $\lg = \log_{10}$, \therefore $\lg 10 = 1$	Since $\ln = \log_e, \therefore \ln_e e = 1$			
$\log_b m^a = a \times \log_b m$	e ^{lna} = a			
$\log_{b} m + \log_{b} n = \log_{b} (m \times n)$				
Note: $\log_{b} m + \log_{b} n \neq \log_{b} m \times \log_{b} n$				
$\log_{b} m - \log_{b} n = \log_{b} \left(\frac{m}{n}\right)$ Note: $\log_{b} m - \log_{b} n \neq \frac{\log_{b} m}{\log_{b} n}$				
Change of Base				
$\log_{v} u = \frac{\log_{a} u}{\log_{a} v}$	$\log_v u = \frac{\log_u u}{\log_u v} = \frac{1}{\log_u v}$			

If
$$\log_a b = x$$
, $\therefore b = a^x$
If $\log_a b = \log_a x$, $\therefore b = x$

Tuition

👬 🔊 A-Math Formula List - Additional Math (4049)

Differentiation					
$\frac{dy}{dx}(ax^n) = anx^{n-1}$ Where' a' and 'n' are constants.	Differentiate Constant $\frac{dy}{dx}(a) = 0$	Sum / Difference of Function $\frac{d}{dx}(u \pm v) = \frac{du}{dx} \pm \frac{dv}{dx}$			
Chain Rule $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$		Quotient Rule $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$			
Product Rule $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$					
Differentiation of Trigonometry $\frac{d}{dx}(\sin x) = \cos x \qquad \frac{d}{dx}(\tan x) = \sec^2 x \qquad \frac{d}{dx}(\cos x) = -\sin x$					
Use Chain Rule to differentiate the functions below. $\frac{d}{dx} \Big[a \sin(bx + c) \Big] = a \times \cos(bx + c) \times b$ $\frac{d}{dx} \Big[a \sin(bx + c) \Big] = a \times \cos(bx + c) \times b$					
$\frac{d}{dx} \Big[a \cos(bx+c) \Big] = a \times -\sin(bx+c) \times b$					

Thition
A-Math Formula List - Additional Math (4049)

$$\frac{d}{dx} [a \tan(bx+c)] = a \times \sec^{2}(bx+c) \times b$$

$$\frac{d}{dx} [a \sin^{n}(bx+c)] = a \times n \times \sin^{n-1}(bx+c) \times \cos(bx+c) \times b$$

$$\frac{d}{dx} [a \cos^{n}(bx+c)] = a \times n \times \cos^{n-1}(bx+c) \times -\sin(bx+c) \times b$$

$$\frac{d}{dx} [ata n^{n}(bx+c)] = a \times n \times \tan^{n-1}(bx+c) \times \sec^{2}(bx+c) \times b$$
Exponential/Natural Logarithm Function
$$\frac{d}{dx} (e^{ax+b}) = ae^{ax+b}$$

$$\frac{d}{dx} (\ln x) = \frac{1}{x} (where x \cdot 0)$$

$$\frac{d}{dx} [\ln(ax+b)] = \frac{a}{ax+b}$$

$$(where ax+b \cdot 0)$$

1st order derivative test Maximum point Minimum point x^+ *x*^{*} χ^{-} x x_0 x_0 dy dy >0 0 < 0< 00 > 0dx dx slope 1 1 1 1 _ slope _ stationary stationary point point Point of inflexion Point of inflexion x^{*} x x^{+} X_0 x X_0 dy dy > 00 > 0< 00 < 0dx dx 1 slope 1 _ slope 1 1 _ stationary stationary point 1 point

Integration					
$\int ax^n dx = \frac{ax^{n+1}}{n+1} + c$	Integrate Constant	Product rule	n≠1,a≠0; a & b are constants		
where n \neq -1	Contraction of the second s	$\int (ax+b)'' d$	$dx = \frac{(ax+b)^{n+1}}{(n+1)(a)} + c$		
Product of constant and a function		Sum and Difference of function			
$\int af(x)dx = a\int f(x)dx$		$\int [\alpha f(x) \pm \beta g(x)] dx = \alpha \int f(x) dx \pm \beta \int g(x) dx$			
Integration of Trigonometry					
$\int \cos x dx = \sin x + c$	$\int \sin x dx = -\cos x + c$		$\int \sec^2 x dx = \tan x + c$		
$\int \frac{a}{b} \cos bx dx = \frac{a \sin bx}{b} + c$	$\int \frac{a}{b} \sin bx dx = \frac{-a \cos bx}{b} + c$		$\int a \sec^2 bx dx = \frac{a \tan bx}{b} + c$		

