If we substitute the first three lines into the series of fractions we will get

$latex \displaystyle 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…$

Looking at this number pattern, we can deduce that the last two fraction will be $latex \displaystyle +\frac{1}{{98}}-\frac{1}{{99}}+\frac{1}{{99}}-\frac{1}{{100}}$

Therefore,

$latex \displaystyle 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{{98}}-\frac{1}{{99}}+\frac{1}{{99}}-\frac{1}{{100}}$

$latex \displaystyle -\frac{1}{2}+\frac{1}{2}$ will cancel each other, so will$latex \displaystyle -\frac{1}{3}+\frac{1}{3}$,

we can safely assume that all the fraction in the series will cancel out its neighbor

Thus the remainder will be $latex \displaystyle 1-\frac{1}{{100}}=\frac{{99}}{{100}}$

a math and e math group tuition woodlands and johor bahru by good math tutor.