Additional Math – Trigonometry – Solve cotangent half angle – 2cosine half angle = 2

$latex \displaystyle \cot \left( {\frac{x}{2}} \right)-2\cos \left( {\frac{x}{2}} \right)=0$

Convert cotangent into cosine divided by sine.
$latex \displaystyle \frac{{\cos \left( {\frac{x}{2}} \right)}}{{\sin \left( {\frac{x}{2}} \right)}}-2\cos \left( {\frac{x}{2}} \right)=0$

Factorize cosine half-angle.

$latex \displaystyle \cos \left( {\frac{x}{2}} \right)\left[ {\frac{1}{{\sin \left( {\frac{x}{2}} \right)}}-2} \right]=0$

Solve for x by finding all angle between but not include 0 degrees and 360 degrees.

$latex \displaystyle \cos \left( {\frac{x}{2}} \right)=0\ \$

$latex \displaystyle \frac{x}{2}=90{}^\circ ,\ 270{}^\circ$

$latex \displaystyle x=180{}^\circ ,360{}^\circ (\text{reject})$

$latex \displaystyle \frac{1}{{\sin \left( {\frac{x}{2}} \right)}}-2\ =\ 0$

$latex \displaystyle \frac{1}{{\sin \left( {\frac{x}{2}} \right)}}\ =\ 2$

$latex \displaystyle \sin \left( {\frac{x}{2}} \right)=\frac{1}{2}$

$latex \displaystyle \frac{x}{2}=30{}^\circ ,\ 150{}^\circ$

$latex \displaystyle x=60{}^\circ ,\ 300{}^\circ$

a-math group tuition at woodlands, admiralty, marsiling, yew tee.

Share:

Math – Statistics – 1st Quartile, Median and 3rd Quartile Ungroup Data

The above two diagrams show you how to find the 1st quartile, median (2nd Quartile) and the 3rd quartile ungroup

Additional Math – Differentiation – Quotient Rule (Challenging)

Differentiate $latex \displaystyle\ y=\frac{{{{x}^{2}}\sqrt{{x+1}}}}{{x-1}}$ with respect to x. Simplify the Numerator (otherwise you need to use both quotient rule for

Additional Math – Binomial theorem – Using Normal Expansion vs Binomial Theorem

The above video shows  two method of expanding the  expression; using the algebraic expansion (rainbow method) versus the binomial theorem.