# Additional Math – Trigonometry – Prove Identities involving Cot A and TanA

$latex \displaystyle \ \frac{{\cot A-\tan A}}{{\cot A+\tan A}}$

$latex \displaystyle (\cot A-\tan A)\div (\cot A+\tan A)$

Change tan A  to sin A/cos A and cot A to cos A/ sin A for easier manipulation.

$latex \displaystyle (\frac{{\cos A}}{{\sin A}}-\frac{{\sin A}}{{\cos A}})\div (\frac{{\cos A}}{{\sin A}}+\frac{{\sin A}}{{\cos A}})$

Find common denominators and simplify the fractions.

$latex \displaystyle (\frac{{\cos A\times \cos A}}{{\sin A\times \cos A}}-\frac{{\sin A\times \sin A}}{{\cos A\times \sin A}})\div (\frac{{\cos A\times \cos A}}{{\sin A\times \cos A}}+\frac{{\sin A\times \sin A}}{{\cos A\times \sin A}})$

$latex \displaystyle (\frac{{{{{\cos }}^{2}}A}}{{\sin A\cos A}}-\frac{{{{{\sin }}^{2}}A}}{{\cos A\sin A}})\div (\frac{{{{{\cos }}^{2}}A}}{{\sin A\cos A}}+\frac{{{{{\sin }}^{2}}A}}{{\cos A\sin A}})$

$latex \displaystyle (\frac{{{{{\cos }}^{2}}A-{{{\sin }}^{2}}A}}{{\sin A\cos A}})\div (\frac{{{{{\cos }}^{2}}A+{{{\sin }}^{2}}A}}{{\sin A\cos A}})$

Use the trigonometric identity and change cos2x + sin2x = 1.

$latex \displaystyle \frac{{{{{\cos }}^{2}}A-{{{\sin }}^{2}}A}}{{\sin A\cos A}}\div \frac{1}{{\sin A\cos A}}$

$latex \displaystyle \frac{{{{{\cos }}^{2}}A-{{{\sin }}^{2}}A}}{{\sin A\cos A}}\times \frac{{\sin A\cos A}}{1}$

$latex \displaystyle {{\cos }^{2}}A-{{\sin }^{2}}A$

$latex \displaystyle \cos 2A$

$latex \displaystyle 2{{\cos }^{2}}A-1$

Prove Identities involving Cot A and TanA

Prove Trigonometric Identities involving Cotangent and Tangent . Additional Math Tuition. Woodlands, Choa Chu Kang, Yew Tee, Sembawang and Johor Bahru.

## Share:

### Math – Statistics – 1st Quartile, Median and 3rd Quartile Ungroup Data

The above two diagrams show you how to find the 1st quartile, median (2nd Quartile) and the 3rd quartile ungroup

### Additional Math – Differentiation – Quotient Rule (Challenging)

Differentiate $latex \displaystyle\ y=\frac{{{{x}^{2}}\sqrt{{x+1}}}}{{x-1}}$ with respect to x. Simplify the Numerator (otherwise you need to use both quotient rule for

### Additional Math – Binomial theorem – Using Normal Expansion vs Binomial Theorem

The above video shows  two method of expanding the  expression; using the algebraic expansion (rainbow method) versus the binomial theorem.