# Additional Math – Surds – Circles – Find the unknown integer a and b

$latex \displaystyle \sqrt{{a+b\sqrt{3}}}=\frac{{13}}{{4+\sqrt{3}}}$

Square both sides of the equation.

$latex \displaystyle {{\left[ {\sqrt{{a+b\sqrt{3}}}} \right]}^{2}}={{\left[ {\frac{{13}}{{4+\sqrt{3}}}} \right]}^{2}}$

Expand and simplify the equation.

$latex \displaystyle a+b\sqrt{3}=\left[ {\frac{{13}}{{4+\sqrt{3}}}} \right]\left[ {\frac{{13}}{{4+\sqrt{3}}}} \right]$

$latex \displaystyle a+b\sqrt{3}=\frac{{169}}{{\left( {4+\sqrt{3}} \right)\left( {4+\sqrt{3}} \right)}}$

$latex \displaystyle a+b\sqrt{3}=\frac{{169}}{{16+4\sqrt{3}+4\sqrt{3}+{{{\left( {\sqrt{3}} \right)}}^{2}}}}$

$latex \displaystyle a+b\sqrt{3}=\frac{{169}}{{19+8\sqrt{3}}}$

Rationalize the denominator.

$latex \displaystyle a+b\sqrt{3}=\frac{{169}}{{19+8\sqrt{3}}}\times \frac{{19-8\sqrt{3}}}{{19-8\sqrt{3}}}$

$latex \displaystyle a+b\sqrt{3}=\frac{{169\left( {19-8\sqrt{3}} \right)}}{{{{{\left( {19} \right)}}^{2}}-{{{\left( {8\sqrt{3}} \right)}}^{2}}}}$

$latex \displaystyle a+b\sqrt{3}=\frac{{3211-1352\sqrt{3}}}{{{{{\left( {19} \right)}}^{2}}-{{{\left( 8 \right)}}^{2}}{{{\left( {\sqrt{3}} \right)}}^{2}}}}$

$latex \displaystyle a+b\sqrt{3}=\frac{{3211-1352\sqrt{3}}}{{361-192}}$

$latex \displaystyle a+b\sqrt{3}=\frac{{3211-1352\sqrt{3}}}{{169}}$

Separate the fraction and sinplify

$latex \displaystyle a+b\sqrt{3}=\frac{{3211}}{{169}}-\frac{{1352\sqrt{3}}}{{169}}$

$latex \displaystyle a+b\sqrt{3}=19-8\sqrt{3}$

$latex \displaystyle a=19,\ b=-8$

The most difficult part of this question is “how to start?”. None of my students had any idea.  But after giving them a few clues, they were able to solve the question rather quickly, however quite a number made careless mistakes here and there. This is expected of question with long working, so please be very  careful.

Small Group Tuition Additional Math (A Math), Combine Science Physics Chemistry  Elementary Math (E Math) Singapore Syllabus at Admiralty, Yew Tee, Choa Chu Kang Woodlands and johor Bahru

## Share:

### Math – Statistics – 1st Quartile, Median and 3rd Quartile Ungroup Data

The above two diagrams show you how to find the 1st quartile, median (2nd Quartile) and the 3rd quartile ungroup

### Additional Math – Differentiation – Quotient Rule (Challenging)

Differentiate $latex \displaystyle\ y=\frac{{{{x}^{2}}\sqrt{{x+1}}}}{{x-1}}$ with respect to x. Simplify the Numerator (otherwise you need to use both quotient rule for

### Additional Math – Binomial theorem – Using Normal Expansion vs Binomial Theorem

The above video shows  two method of expanding the  expression; using the algebraic expansion (rainbow method) versus the binomial theorem.