# Additional Math – Differentiation – Equations with cot x and cosec x

$latex \displaystyle y={{\cot }^{2}}x-5+\cos ecx$

It is difficult to differentiate cot x and cosec x directly. You need to change to a form where you can differentiate  cot x = $latex \displaystyle \frac{1}{{\tan x}}$ and cosec x = $latex \displaystyle \frac{1}{{\sin x}}$.

$latex \displaystyle y=\frac{1}{{{{{\tan }}^{2}}x}}-5+\frac{1}{{\sin x}}$

$latex \displaystyle y={{\tan }^{{-2}}}x-5+{{\sin }^{{-1}}}x$

Use chain rule to differentiate the equation. Don’t forget to differentiate tan x to $latex \displaystyle {{\sec }^{2}}x$ and sin x to $latex \displaystyle \cos x$

$latex \displaystyle \frac{{dy}}{{dx}}=-2{{\tan }^{{-3}}}x\times {{\sec }^{2}}x-{{\sin }^{{-2}}}x\times \cos x$

$latex \displaystyle \frac{{dy}}{{dx}}=\frac{{-2}}{{{{{\tan }}^{3}}x}}\times \frac{1}{{{{{\cos }}^{2}}x}}-\frac{1}{{{{{\sin }}^{2}}x}}\times \cos x$

$latex \displaystyle \frac{{dy}}{{dx}}=\frac{{-2}}{{{{{\tan }}^{3}}x{{{\cos }}^{2}}x}}-\frac{{\cos x}}{{{{{\sin }}^{2}}x}}$

Additional Math and Combine Science (Physics/ Chemistry) Tuition at Woodlands, Choa Chu Kang, Yew Tee, Sembawang and Yishun.

## Share:

### Math – Statistics – 1st Quartile, Median and 3rd Quartile Ungroup Data

The above two diagrams show you how to find the 1st quartile, median (2nd Quartile) and the 3rd quartile ungroup

### Additional Math – Differentiation – Quotient Rule (Challenging)

Differentiate $latex \displaystyle\ y=\frac{{{{x}^{2}}\sqrt{{x+1}}}}{{x-1}}$ with respect to x. Simplify the Numerator (otherwise you need to use both quotient rule for

### Additional Math – Binomial theorem – Using Normal Expansion vs Binomial Theorem

The above video shows  two method of expanding the  expression; using the algebraic expansion (rainbow method) versus the binomial theorem.